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We present an asymptotic analysis of spatial differencing schemes for the discrete-ordinates 
equations, for diffusive media with spatial cells that are not optically thin. Our theoretical tool 
is an asymptotic expansion that has previously been used to describe the transition from 
analytic transport to analytic diffusion theory for such media. To introduce this expansion and 
its physical rationale, we first describe it for the analytic discrete-ordinates equations. Then, 
we apply the expansion to the spatially discretized discrete-ordinates equations, with the 
spatial mesh scaled in either of two physically relevant ways such that the optical thickness of 
the spatial cells is not small. If the result of either expansion is a legitimate diffusion descrip- 
tion for either the cell-average or cell-edge fluxes, then we say that the appropriate flux has the 
appropriate diffusion limit; otherwise, we say it does not. We consider several transport dif- 
ferencing schemes that are applicable in neutron transport and thermal radiation applications. 
We also include numerical results which demonstrate the validity of our theory and show that 
differencing schemes that do have a particular diffusion limit are substantially more accurate, 
in the regime described by the limit, than those that do not. f> 1987 Academic Press, Inc. 

I. INTRODUCTION 

In considering deterministic numerical methods for neutron transport and 
radiative transfer problems, one often faces the situation that, due to computer 
memory or running time limitations, the spatial cells in at least some of the energy 
or frequency groups are optically thick. Since standard error analyses of numerical 
transport schemes generally predict errors that are small for optically thin cells and 
that grow with some power of the optical thickness [l-4], there is strong reason to 
question the accuracy of numerical results that are obtained for optically thick 
meshes. 

However, for many applications, the problems in which optically thick cells occur 
are also ones for which the problem is “diffusive.” We shall precisely define this 
term below, but for now, this roughly means that the solution of a diffusion 
equation is a good approximation to the solution of the transport equation. In the 
last decade, the mathematical relationship between transport and diffusion theory 
has been clarified in a large body of work showing that transport theory transitions 
into diffusion theory in a certain asymptotic limit. A sampling of this work is given 
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in [S-9] ([S] is a review article). In the present article, we apply this same 
asymptotic expansion to the discretized transport equation, with an optically thick 
mesh, to determine whether a discretized version of the correct diffusion equation 
results. If it does, and if the spatial mesh is adequate for the discretized diffusion 
equation, then good numerical results should be expected; otherwise, they should 
not. 

In the remainder of this introduction, we describe this idea in greater detail and 
give a summary of the rest of the article, where the idea is worked out fully and 
tested numerically. Since most of the earlier work relating transport and diffusion 
theory used the neutron transport equation as its point of departure, we use that 
equation with its corresponding nomenclature throughout this article. To keep the 
discussion simple, we restrict our analysis to the one-group discrete-ordinates 
equations in slab geometry. These equations specifically model one-group neutron 
transport and grey radiative transfer. 

First, we discuss the nature of the asymptotic expansion, as applied to the 
analytic discrete-ordinates equations. This expansion applies to “diffusive” 
problems, by which we mean that three key assumptions hold: 

(1) the physical medium is many mean free paths thick (i.e., is “optically 
thick”); 

(2) the collision process is scattering-dominated (i.e., absorption cross- 
sections are small); 

(3) the angular flux, cross-sections, and source are continuous and vary 
spatially by, at most, a small amount over the distance of a mean free path. 

The earlier work shows that, by writing the transport equation in dimensionless 
form and invoking these assumptions, one obtains: 

P+P)+ * l+b(x, p) 

L 
OT.(X) = - -E(T,(X) ; 1’ $(x, p’) dp’ +&Q(x). E 1 1 (1.1) 

Here gT, era, Q and $ are scaled versions of the total and absorption cross sections, 
source, and angular flux, and all quantities are 0( 1) and have 0( 1) derivatives with 
respect to x, except for the small parameter E, which depends on the particular 
characteristics of the transport problem. Then, constructing an asymptotic solution 
of this equation for E -@ 1, one obtains: 

Icl(x, PI = 0) + 0(&L (1.2) 

where 

(1.3) 
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Thus, for diffusive transport problems in which Eq. (1.1) is a legitimate formulation, 
$ is well approximated by c$, the solution of the diffusion equation (1.3). 

In regions of any physical problem where the above three assumptions do not 
hold, and hence where Eq. (1.1) is not valid, the results (1.2) and (1.3) do not 
follow. In particular, for an otherwise thick and diffusive problem, at material inter- 
faces, or on outer boundaries with nonisotropic (incident) boundary conditions, the 
angular flux varies by an 0( 1) amount over the distance of a mean free path, and 
one must add to the right side of Eq. (1.2) a “boundary-layer” solution. The con- 
struction and manipulation of such boundary layers is discussed fully in [5-g]. The 
analysis in this article deals specifically with regions of a thick, diffusive problem 
where the three assumptions in the above paragraph are valid, and we assume that 
if 0( 1) boundary layers exist, then they are adequately resolved by a suitably line 
mesh. We shall discuss the effects of 0( 1) boundary layers later in our numerical 
results section. 

To proceed, we consider the spatially discretized discrete-ordinates version of 
Eq. ( 1.1 ), with a fixed angular quadrature set and spatial cell widths denoted by Ax. 
Since aT, au, and Q are 0( 1) and have 0( 1) derivatives, then standard truncation- 
error analyses show that, to achieve accurate solutions by making the truncation 
error small, aT AX/E must be small in Eq. (1.1) [S, 61, and {if the diffusion length 
L= (3a,- a,)- “’ is a typical distance over which 4 in Eq. (1.3) varies by an 0( 1) 
amount} JG A x small in Eq. (1.3). In other words, truncation errors in the 
discretized transport equation are small when the spatial mesh is optically thin, and 
truncation errors in the discretized diffusion solution are small when the mesh is 
line enough to resolve variations in the solution. Thus, for Eqs. (1.1) and (1.3), the 
constraints on the mesh for achieving a small transport truncation error are much 
more strict than those for achieving a small diffusion truncation error. This occurs 
even though Eq. (1.2) indicates that the transport and diffusion solutions are nearly 
identical. 

It is, thus, reasonable to ask if, for diffusive media, a given transport dis- 
cretization can produce accurate results when aT AX/E is not small. In particular, if 
a mesh Ax = 0( 1) is reasonable for differencing the diffusion equation, but aT AX/E 
is large, can one obtain transport results with accuracy comparable to that of the 
diffusion results with this mesh? Or, if a mesh Ax = O(E) is small for diffusion dif- 
ferencing but aT AX/E = 0( 1) is not small, will accurate transport results then be 
obtained? 

These are essential questions because, for many applications in both neutronics 
and radiative transfer, computer memory and running time limitations prohibit the 
use of a mesh which is sufficiently fine that the transport truncation error is small. 
Moreover, these questions cannot be addressed by a standard truncation error 
analysis because such analyses are valid only for spatial cells that are optically thin 
and, consequently, for which the truncation error is small. Thus, at present, there 
exists no theoretical justification for the use of “coarse” spatial meshes in any type 
of transport calculation. 

The purpose of this article is to propose such a justification for diffusive media. 
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Our primary tool is the asymptotic procedure that leads from Eq. (1.1) to Eqs. (1.2) 
and (1.3). In particular, we apply this procedure to discretized versions of Eq. (1.1). 
If application of this procedure yields a legitimate discretized diffusion equation, 
then good numerical accuracy can be expected in this regime provided the spatial 
mesh is adequate for the discretized diffusion equation and provided any nondif- 
fusive transport regions, for example, near boundaries or interfaces, are resolved by 
a suitably line mesh. Conversely, if the transport discretization does not limit to a 
legitimate diffusion discretization, then the use of an optically coarse mesh in a dif- 
fusive problem should lead to poor numerical results. 

We consider several spatial differencing schemes that are applicable in neutron 
transport and thermal radiation applications. The class of schemes considered here 
have two unknown fluxes per cell and are built upon the use of cell-edge and cell- 
average fluxes. It is natural to ask whether each of these quantities has a correct dif- 
fusion discription in a diffusive problem. Also, there are two natural lengths in dif- 
fusive problems, a typical mean free path and a typical distance over which the 
angular flux varies by an 0( 1) amount (a “scale length”). Thus, to obtain a 
reasonable discretized approximation of the transport equation for diffusive 
problems, it is natural to consider spatial meshes chosen such that the width of a 
spatial cell is comparable either to a scale length or to a mean free path. We denote 
these two regimes as “thick” and “intermediate,” since these labels describe the 
optical thicknesses of the spatial cells in the two cases. (We add parenthetically that 
radiative transfer calculations characteristically use spatial meshes that are optically 
“thick,” while neutronics calculations characteristically use spatial meshes that are 
optically “intermediate. ” “Thin” regimes, for which the optical thickness of the cells 
and the truncation error are small, can be treated by standard truncation error 
analyses, and will not be considered in this article. Thus, although certain practical 
problems of a diffusive nature do occur in media which are optically thin, these will 
not be analyzed here.) 

Therefore, with two basic unknowns, the cell-average and cell-edge fluxes, and 
two chosen scalings for the spatial mesh, there are a total of four asymptotic limits 
for each differencing scheme. The schemes with two unknowns per cell that we 
consider in this article are the diamond-difference [ 10, 111, step [ 10, 111, Lund- 
Wilson [12,13], and Castor [ 141 schemes, together with a “new” scheme. Our 
asymptotic analysis, described in Sections IV-VII, gives results that are summarized 
in Table I. 

In this table, the term “maybe” indicates that for general problems in the 
indicated regime, the method does not have the indicated limit, but under special 
conditions the method does have the indicated limit. These special conditions are 
summarized in Table I and are fully discussed in Sections IV-VII. 

The work presented in this article is based, in part, on earlier work which con- 
sidered the behavior of transport differencing schemes in optically thick, diffusive 
media [ 12-173. In particular, Grant [ 151 and Brown, Hill, and Pomraning [16] 
present criteria that are sufficient, but not necessary, for determining whether at 
least one correct diffusion limit exists. In [12-131, the Lund-Wilson method is 
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TABLE I 

Summary of Results 

Intermediate 

Edge Average 

Thick 

Edge Average 

Diamond 
Step 
Lund-Wilson 
Castor 
New 

yes 
maybeh 

no 
no 

yes 

yes 
maybeh 
maybe* 
maybe’ 

yes 

maybe” 
maybe” 

no 
no 

yes 

Qualifiers are defined as follows: 
a Yes only if boundary sources are isotropic. 
h Yes only if o,,, = Q, = 0 and (u ,-II), i , 2 = constant. 
‘ Yes only if (o,h),+ ,,z = constant. 

presented as a positive differencing scheme which, for the cell-average fluxes, trans- 
itions to a cell-centered diffusion description as the optical thickness of the spatial 
cells becomes large. In [ 141, Castor’s method is presented as a method which, for 
the cell-average fluxes, more accurately transitions to a cell-centered diffusion 
description for spatial cells of all optical thicknesses. Castor’s theoretical tool is a 
Fourier analysis that requires (TV, on, and Ax to be constant; the asymptotic 
analysis in this article does not inherently require such assumptions. Finally, 
in [ 171, Larsen employs an asymptotic expansion which is equivalent to the “inter- 
mediate” expansion used in this article, but no distinction is made between diffusion 
limits for cell-average and cell-edge fluxes. The present article draws from all this 
prior work and attempts to combine, clarify, and complete it. 

An outline of the remainder of this article follows. In Section II we introduce 
notation and motivate the concepts underlying the asymptotic analysis by casting 
the analytic slab geometry discrete-ordinates equations into dimensionless form and 
carrying out this asymptotic analysis to derive analytic diffusion theory. In Sec- 
tion III we discuss two key items: the application of the asymptotic analysis to the 
spatially discretized discrete-ordinates equations, and two physically motivated 
scalings for the spatial mesh. We carry out the asymptotic analysis in Section IV for 
the diamond-difference method [ 10, 111, in Section V for the step method [ 10, 111, 
in Section VI for the Lund-Wilson [ 12, 131 and Castor [ 141 methods, and in Sec- 
tion VII for the “new” method. In Section VIII, we present numerical results that 
test and confirm the predictions made in Sections IV-VII, and we conclude with a 
brief discussion in Section IX. 
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II. ASYMPTOTIC ANALYSIS OF THE ANALYTIC DISCRETE-ORDINATES EQUATIONS 

In this section we consider the steady, monoenergetic, discrete-ordinates 
equations with isotropic scattering, 

m=l ,..., N, (2.1) 
n=I 

and the standard diffusion approximation to these equations, 

d 1 d 
------i(z)+~~(z)~(Z)=ecZ,, dz 35,(z) dz (2.2) 

where 

S<,(Z) = CT(Z) - rY5(z). (2.3) 

The notation here is standard [ 10, 1 I], except for the tildes, which indicate dimen- 
sional quantities. In Eqs. (2.1), we employ an order-N quadrature set 
I I~,,wm Im = L..., N} with weights w, normalized as 

“g, w,=l. (2.4) 

Boundary conditions for Eqs. (2.1) and (2.2) will, for now, be unspecified. 
Here we shall derive Eq. (2.2) from Eq. (2.1) using an asymptotic expansion. Our 

purpose is to establish notation, to derive the discrete-ordinates versions of the 
dimensionless Eqs. (l.l)-(1.3) from (2.1)-(2.3) so that the former equations can be 
used in place of the latter in succeeding sections, and to present the basic ideas 
underlying the asymptotic analysis. 

To begin, we consider C,(z), C,(z), O(Z), q,(z), and J(z) in Eqs. (2.1) and (2.2) 
to all be continuous, smoothly varying functions of Z, and we define a “scale length” 
p for these quantities to be a typical distance over which they vary by, at most, an 
O(1) amount. For one example, let e(z) be a delta function, let c?~, 6’, be constants 
with 0 < 8, < CT, and let us consider a region bounded away from the support of 
the delta function (i.e., bounded away from boundary layers). The diffusion length 
L, defined by 

L = (35, c,J1’*, (2.5) 

would be a reasonable choice for p since 8 (and, approximately, 5) will undergo a 
relative O(1) change over this distance in this region. For another example, let 
d,= d, be constants, e be a positive constant, and the system be a finite slab of 
thickness X with vacuum boundary conditions. Then, 5, and 4 will be roughly 
parabolic in shape, with the approximate value of zero at the edges of the system 
and having maxima at the center of the system. Here an appropriate choice for p is 
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not the diffusion length, which has the value L = co, but rather p =X/2. In general, 
the definition of p is not precise, but is indicated by the special nature of the 
problem under consideration. Henceforth, we shall assume that a particular 
problem is in mind, and for this problem, one can select an appropriate scale 
length p. 

Let us now define a new dimensionless distance variable x in terms of z and the 
scale length p by 

x = z/p, (2.6) 

and let us introduce 

Il/,n(x) = L(zL (2.7a) 

4C.x) = &-1. (2.7b) 

Then $,, and 0 vary by, at most, an 0( 1) amount over an 0( 1) distance in X, and 
we make the reasonable assumptions that in a diffusive region 

( ) ; n Ii/m(x) = O(l), 
n = l,.... 

( ) 
g “4(x)=0(1), 

(2.8) 

(We note that these assumptions are reasonable only if the cross sections and 
source have the same scale length p, but this is assumed above in the definition 
of P.1 

Using Eqs. (2.6) and (2.7), we can rewrite (2.1) and (2.2) as 

P/g (x) + P5T.(Z) $m(x) = P6.dZ) 5 $Jx) w, + p!m (2.9) 
,I = 1 

-~~~((X)+PB,(z)~(X)=P~(z), 

Next, we let (dT) be a typical value of c?~(z), and we define 

GT(Z) 
fJ74x) =m ; 

then ar(x) = 0( 1). We may write 

PCT(Z) = P<5T) aAx) =a a,(x), 

where 

1 typical mean free path 6=-z 
P(5T) scale length ’ 

(2.11) 

(2.12) 

(2.13) 
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and Eqs. (2.9) and (2.10) become 

Pm g tim(x) + + 4w) = P~Z) f Icln(4 W, + P&), (2.14) 
n=I 

-~~$((“)+P”,(‘)((x)=Pe(z). (2.15) 

Now we consider the three assumptions stated in the first paragraph of the 
Introduction. In particular, we shall mathematically formulate these assumptions in 
such a way that Eq. (2.15) can be asymptotically derived from Eq. (2.14). 

First, the assumptions that $ varies by a small amount over the distance of a 
mean free path and by an 0( 1) amount over a scale length imply that there must be 
many mean free paths in a scale length. Thus, Eq. (2.13) gives 

E@ 1. (2.16) 

The assumption that the system is optically thick is met by requiring the system to 
be comparable to (or larger than) a scale length. Also, if we set 

PC,(Z) =&o,(x), (2.17) 

where crU is O(l), then absorptions are small and, as seems desirable, the leakage 
and absorption terms on the left side of Eq. (2.15) are comparable in size. Likewise, 
we set 

P&Z) = EQ(x)> (2.18) 

so that all the terms in Eq. (2.15) are comparable in size. Then, since E divides out 
of this equation, d will be 0( 1) with respect to E, and if $ z 4, $ will be 0( 1) also. 
The scaling (2.18) is not essential because multiplication of EQ by any other power 
of E will merely result in a multiplication of the solutions (Ic/ and 4) by the same 
power of E. However, the scaling (2.18) is convenient, and hence we shall use it. 

Now, combining Eqs. (2.14)-(2.18) and (2.3), we obtain 

which are just Eqs. (1.3) and (the discrete-ordinates version of) (1.1). These dimen- 
sionless equations are equivalent to the dimensional equations (2.1) and (2.2), and 
the three assumptions discussed above Eq. (1.1) are equivalent to the requirements 
that $,,,, or, go, and Q are 0( 1) and have 0( 1) derivatives with respect to x, and 
that I-: 4 1. 
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To derive Eq. (2.20) from Eq. (2.19) we introduce the ansatz, 

Il/?Jx)z f EklCl!?(X), 
k=O 

(2.21) 

into Eq. (2.19) and equate the coefftcients of different powers of E to obtain the 
system of equations 

with I,//~‘)=$’ 2)=0. W e now solve these equations recursively. 
Equation (2.22) with k = 0 is 

which, because of the normalization (2.4) implies 

l+q’(x) = @O’(x), 

where c$‘“‘(x) is, for now, undetermined. 
Equation (2.22) with k = 1 is 

(2.23) 

(2.24) 

(2.25) 

In order that a solution $, (I) of this equation exist, a solvability condition must be 
met. Namely, if we multiply by W, and sum over all m, the left side vanishes, and 
we obtain as a condition for the existence of $!,i’ 

(2.26) 

which, to obtain a nonconstant d(O), requires 

o= f P”W,. (2.27) 
n=l 

Assuming that this condition on the quadrature set is met, we obtain as the general 
solution of Eq. (2.25) 

P, W”’ $(l)=pL-- 
m cT dx ’ 

(2.28) 

where d(‘) is undetermined. 
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Equation (2.22) with k = 2 is 

(2.29) 

and the solvability condition for this equation is 

(2.30) 

This is the standard diffusion equation, provided 

f (2.31) 
,I = I 

Thus, if the constraints (2.27) and (2.31) on the quadrature set hold, then 
t+bm = qS(‘) + O(E), where 4”’ satisfies Eq. (2.20). Equivalently, the connection 
between Ic/,,, in Eq. (2.19) and ~+4 in Eq. (2.20) is 

I), = q5 + O(E). (2.32) 

This, of course, is just the discrete-ordinates version of Eq. (1.2). 
The asymptotic analysis has shown several things. First, if the quadrature set 

“integrates” up to quadratic powers of pL, correctly, then standard diffusion theory 
well-approximates transport theory in the asymptotic regime described above. In 
practice, quadrature sets are usually chosen to satisfy these constraints; and for the 
remainder of this article, we shall assume that the constraints hold. Second, the 
0( 1) component of Ic/, is isotropic, and the O(F) component is linear in pm. Third, 
the scalings (2.12), (2.17), and (2.18) have the following physical content: the 
probable number of collisions a particle undergoes in a scale length is large 
[0(1/~)], and is inversely proportional to two small [O(E)] quantities, the 
probable number of absorptions in a scale length, and the probable number of 
source particles emitted in a scale length. 

III. ASYMPTOTIC SCALING OF THE SPATIALLY DISCRETIZED 
DISCRETE-ORDINATES EQUATIONS 

The starting point for the remaining analysis in this article is the balance 
equation, obtained by integrating Eq. (2.19) over the jth spatial cell 
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Here, we have defined 

9m,j+ Ii* = tim(Xi+ l/2), (3.2) 

(3.3) 

(3.4) 

Ax,=x,+I,z-x, 1123 (3.5) 

and we have taken aTi and CJ, to be representative values of a7-(.x) and a,(x) in the 
jth cell. 

If, in the physical problem to solved, oT and (T, are constant in the jth cell, then 
Eq. (3.1) is exact, in the sense that it follows without approximation from 
Eq. (2.19). However, it contains two basic unknowns, the cell-edge and cell-average 
fluxes, and an extra “auxiliary” equation relating these two fluxes must be specified 
so that the resulting two equations yield a viable numerical method. Various 
auxiliary equations are specified later in this article; here we discuss Eq. (3.1) and, 
in particular, our choice of scalings for Axi. 

First, we note from Eq. (2.6) that 

1 P 
dx=z 

= the number of spatial cells in a scale length. (3.6) 

Thus, the largest reasonable value for Ax, from the point of view of mesh 
refinement, is Ax = 0( 1). This means that, at most, a “few” spatial cells are 
available to resolve an 0( 1) variation in $, and since 

aT Ax 
5, AZ=- 

E (3.7) 

then each spatial cell is many [i.e., 0( l/e)] mean free paths thick. We define this as 
the “thick” diffusion regime. 

A second reasonable value for Ax is Ax= O(E). This means that 0( l/s) spatial 
cells are available to resolve an 0( 1) variation in I,!I, and that 

a7 Ax 
ST AZ=------= O(l), E (3.8) 

so that each spatial cell is on the order of a mean free path thick. We define this as 
the “intermediate” diffusion regime. 

Other possible scalings are Ax= O(E’) for I3 2. Now 0( l/a’) spatial cells are 
available to resolve an 0( 1) variation in II/, and 

ET AZ = O(& ‘), (3.9) 
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so each cell is a very small fraction of a man free path thick. We describe this as the 
“thin” diffusion regime. 

To summarize, if hi = 0( 1) and 

Ax, = dhi, (3.10) 

then the three regimes are defined by 

thick 
intermediate 
thin. 

(3.11) 

Here, the name assigned to each regime connotes the optical thickness of a typical 
spatial cell. 

In the remainder of this article, we shall dwell on the thick (I= 0) and inter- 
mediate (1= 1) regimes; here we simply state that all the discretization methods 
treated below have both the cell-average and cell-edge diffusion limits in the thin 
(I> 2) regime. (The proof of this lies in performing the “same” asymptotic analysis 
as we show for the I= 0 and I= 1 cases below.) This result is not unexpected 
because, in the thin regime, the mesh is scaled in such a way that as E + 0, the 
optical thickness of a cell, and hence the truncation error, both tend to zero; thus, 
the asymptotic analysis of the analytic transport equation applies. As stated in the 
Introduction, our main concern in this article is with regimes in which the optical 
thickness of the spatial cells (i.e., the formal truncation error) does not tend to zero. 

To clarify the meaning of the thick and intermediate diffusion limits, let us con- 
sider Fig. 1. On this figure, the point labeled “Discretized Sy” denotes any problem 
with c>O and dx->O. (See [lS].j As A.u +O with t: fixed, the discretized S, 
equations converge to the analytic S,” equations (A.u = 0, E > 0), as shown in the 
figure. If now E -+ 0, the analytic S, equations converge to the analytic diffusion 
equation (Ax = 0, F = 0), as is shown in the figure, and as we proved in Section 2. 

AX 

DISCRETIZED THICK DISCRETIZED 
DIFFUSION 

------------ 
/ 

7 

SN 
/ 

/ , 

E 
ANALYTIC SN 

FIG. 1. Comparison of the thick and intermediate diffusion limits. 
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Also, if one starts with a legitimate discretized diffusion equation (labeled as dx > 0, 
E = 0), and lets Ax -+ 0, one obtains the analytic diffusion equation, as shown in the 
figure. 

In the thick diffusion regime, we have Ax = h = O( 1); thus, as E -+ 0, we (in prin- 
ciple) move along the horizontal dashed line linking “Discretized SN” to 
“Discretized Diffusion.” If, upon calculating this limit, the cell-average (or cell-edge) 
fluxes, in fact, are determined by a “legitimate” discretized diffusion equation, then 
we say that the cell-average (or cell-edge) fluxes have the thick diffusion limit; 
otherwise, we say they do not. (By “legitimate,” we mean that as Ax + 0, the 
correct analytic diffusion equation results.) 

In the intermediate diffusion regime we have Ax = ch, and thus as E + 0, we, in 
principle, move along the diagonal dashed line linking “Discretized S,” to 
“Analytic Diffusion.” [Note that the slope of this line is h, hence is O(l).] If, upon 
calculating this limit, the cell-average (or cell-edge) fluxes, in fact, are determined 
by the analytic diffusion equation, then we say that the cell-average (or cell-edge) 
fluxes possess the intermediate diffusion limit; otherwise, we say they do not. 

For any specific discretized S, problem, one can determine numerical values for 
the dimensionless quantities E [Eq. (2.13)] and Ax [Eq. (3.5)]. These positive 
quantities locate a “starting point” for the problem that determine whether the 
problem is in a regime described by the thick, intermediate, or thin limits. 

This situation is depicted in Fig. 2. The boundaries of the regimes labeled “thick,” 
“intermediate,” and “thin” are not precise, but if the starting point lies in the thick 
regime and the given differencing scheme does not have the thick diffusion limit for 
the cell-average (or cell-edge) fluxes, then one should not expect accurate cell- 
average (or cell-edge) fluxes in the resulting numerical solution. A similar statement 
holds for the intermediate diffusion limit. If the starting point lies in the thin regime, 
then the truncation error will be small enough that there should be little concern 
about the accuracy of the numerical solution. Finally, if the starting point lies out- 
side the thick, intermediate, and thin regimes, then the analysis in this article is not 
relevant. 

We wish to emphasize that one cannot make intuitive assumptions regarding a 
relationship between the thick and intermediate diffusion limits. These limits are 

AX 

O(1) - 

THICK 

J INTERMEDIATE 

THIN 

FIG. 2. The thick, intermediate, and thin regimes. 
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independent, and although the intermediate limit uses many more spatial cells that 
the thick limit, is not true that a scheme that possesses a thick diffusion limit 
necessarily possesses an intermediate diffusion limit. In fact, the Lund-Wilson 
method, treated below, has a thick, but not necessarily an intermediate, diffusion 
limit. (See Table I) Likewise, we shall analyze several schemes whose cell average 
fluxes have a particular diffusion limit, but the cell-edge fluxes do not, and it seems 
possible that a scheme might exist for which the converse could also be true. 

In addition, we wish to point out that the concepts of “thick” and “intermediate” 
diffusion limits have previously been discussed in the literature [ 193, where they are 
respectively referred to as “strong” and “weak” asymptotic limits. We use the for- 
mer choice of words in this article because we believe it is more descriptive. 

IV. THE DIAMOND-DIFFERENCE METHOD 

The diamond-difference method is a standard method that has been widely used 
in neutronics codes [lo, 111. It has also been used recently in radiative transfer 
applications [20]. Here, we study its properties in the thick and intermediate dif- 
fusion regimes. 

A. Thick Regime 

Using Eq. (3.10) in Eq. (3.1) we find that the diamond-difference equations in the 
thick diffusion regime are 

$???,= twm.,. l/2 + $m., 1,n). 
As in Section II, we introduce the ansatz 

(4.2 

(4.3 

for both the cell-average and cell-edge fluxes into these equations, equate the coef- 
ficients of different powers of E, and obtain a system of equations that can be solved 
recursively. 

The 0(1/e) equations are 

(4.4 

and thus, 

where 4:“) remains to be determined. 
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The 0( 1) equations are 

(4.6) 

11/(O) = g+(o). 
mJ W&J+ I/2 + (I/:,:- l/d’ (4.7) 

To analyze these equations, we decompose the cell-edge fluxes into an isotropic and 
an anisotropic component, 

*Eji 112 = @? I,2 + c,:+ 112, (4.8) 

with 

(4.9) 

Introducing Eqs. (4.5) and (4.8) into (4.7), we obtain 

(p’= +((/p’ 
I ,+ l/2 + cq%*L (4.10) 

0 = ?I:,‘, + ,,2 + rl!z,‘, ~ l/2 9 (4.11) 

and so 

s!?yj+ I,2 = ( -1 Yvm, (4.12) 

where q, is undetermined. Equation (4.6) now becomes 

(4.13) 

and applying the solvability condition (multiplying by w, and summing over m), 
we obtain 

(4.14a) 

We also have, from Eqs. (4.9) and (4.12) 

o= 2 q,w,. 
n=l 

Assuming that these conditions are met, the solution of Eq. (4.13) is 

(4.14b) 

(4.15) 

581/69/2-3 
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Also. 

l)(O). 
ml,]+ I/2= 4 (O) I+ 112 + ( -1 )‘qm, (4.16) 

where the quantities on the right sides of these equations are, at this point, undeter- 
mined. [However, q,,, satisfies the two constraints (4.14).] 

The O(E) equations in (4.1)-(4.3) are 

07.j 
( 

(l/$- f qwn 
n=l > 

= -5$;,)j+I,2-$;,:m ,,J-(T @“‘+Q,, (4.17) Ul I 

Icl!$ = t &+ I,2 + Ic/!A,‘i ,121. (4.18) 

Applying the solvability condition to Eq. (4.17), we get 

Here we have introduced the notation (o,h), = aujhj, etc. Adding Eq. (4.19) to the 
corresponding equation for the (j + 1 )st cell and using Eq. (4.18), we obtain 

- C(aah)j+ 14j!+‘, + (~uh)jdj”‘l+ C(hQ)i+ 1 + (hQ),l’ (4.20) 

Finally, introducing Eqs. (4.15) and (4.10) into this result and rearranging, we get 

(4.21) 

where Qj + ,,2 satisfies the edge-differenced diffusion equation 

- 

+ dC(aah),+ l(@j+3/2 + @j+ l/2) + (auh)j(@j+ 112 + @j-l/2)1 

= 4 C(hQ)j+ 1+ (hQ),l. (4.22) 

Equations (4.7), (4.16), and (4.21) now give 

II/ m,~ f l/2 = @j+ 112 +(-lY 
F 

)lm-3: Ph% + O(E), (4.23) 
n=l 1 

*mj= t(@j+ 112 + @ji */2) + O(E). (4.24) 
Thus, since @.i+ ,,* satisfies a legitimate discretization of Eq. (2.20), then, from 
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Eq. (4.24) the diamond-differenced, cell-average fluxes have the thick diffusion 
limit. However, from Eq. (4.23), the cell-edge fluxes can oscillate from one cell to 
the next around the correct result, and if so, they do not have the thick diffusion 
limit. By Eq. (4.21), the scalar component of the cell-edge fluxes can oscillate as 
well, and if so, it also will not have the thick diffusion limit. 

This analysis shows that, although the cell-edge fluxes do not generally have the 
thick diffusion limit, they do have this limit if q, = 0. In practice, we observe that 
the diamond-differenced cell-edge fluxes do not oscillate much when the incident 
boundary fluxes on the thick diffusive region are nearly isotropic, but that they do 
oscillate substantially if these fluxes are highly anisotropic. This observation agrees 
with Eqs. (4.14) and (4.23), which show that the anisotropy of the cell-edge fluxes is 
concurrent with their cell-by-cell oscillations. Thus, anisotropic boundary con- 
ditions produce a nonzero qrn, and this produces anisotropic, oscillating, cell-edge 
fluxes across the entire physical system. We shall discuss these oscillations further in 
Section VIII. 

B. Intermediate Regime 

The diamond-difference equations in the intermediate diffusion regime are 

timi= f(tim,j+ I/2 + tim,j- l/2). (4.26) 

Referring back to Fig. 1, we see that discretized S, equations that have the inter- 
mediate diffusion limit converge, in the limit E + 0, to the analytic diffusion 
equation. Also, we have assumed that the analytic diffusion and transport solutions 
are smooth with respect to x, and that the analytic transport solution is a smooth 
function of E (see the Introduction). Consequently, for the cell-edge and cell-average 
fluxes in Eqs. (4.25) and (4.26), we shall hypothesize the existence of smooth 
functions .f,(x, E) and g,(x, E) such that 

hm,=fm(xj~ EL (4.27a) 

*,,j+1/2=g,(Xj+1/2,E). (4.27b) 

This ansatz need not, in general, be true. In particular, it a priori disallows any 
possibility of oscillatory solutions such as exist in the thick diffusion regime. 
However, such solutions are not observed in actual calculations in the intermediate 
diffusion regime. Moreover, we shall show that the predictions obtained from this 
ansatz agree with our numerical results. Thus, the succes of this ansatz provides its 
ultimate justification. 

Equation (4.27b) and the assumed smoothness of g, imply that 

txj9 E) + O(E3), (4.28) 
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and introducing this and Eq. (4.27a) into Eqs. (4.25) and (4.26), we get 

(4.29) 

c2h? d2g 
fmtxj, E)=g,(XJy E) + Lm g dx* (X,> El+ O(E4). (4.30) 

The second of these equations implies g, =f, + O(E’), and hence the first equation 
can be written 

(4.31) 

where all quantities are evaluated at x,. 
We can now apply the same asymptotic analysis to Eq. (4.31) as we applied 

earlier to Eq. (2.19). In fact, since the two equations differ only in the O(.s2) terms, 
the results for Eq. (2.19) apply here directly. Thus, there exists a function I’“’ 
such that 

f,b, E)=d(o'(X)+ 0(&l, (4.32) 

where 

--$$)loJ+cJJ#~o)=,, 
T 

and where all quantities in these equations are evaluated at xj. Equations (4.27) 
(4.30), and (4.32) imply 

Il/,j = 4’“‘bj) + O(E), (4.34a) 

*m, j+ l/2 = 4'"'(xj+ l/2) + O(&). (4.34b) 

For now, Eq. (4.33) holds just at the points x,, which denote the centers of the 
spatial cells of an s-dependent mesh (recall Ax, = chj). However, if we require 
Eqs. (4.33) and (4.34) to hold for all suitably small E, and if we recall that d’“‘(x) 
must be a smooth function of x because the transport solution is smooth, then we 
have that Eq. (4.33) must hold for all points x in the physical system. Thus, to 
leading order, the cell-average and cell-edge fluxes are given by Eqs. (4.34) where 
#‘O’(x) satisfies Eq. (4.33) at every point in the system, and so the diamond-differen- 
ted cell-edge and cell-average fluxes have the intermediate diffusion limit. 

Before concluding this section, we wish to discuss a feature of the intermediate 
diffusion analysis that we were able to overlook in this treatment of the diamond- 
difference scheme, but that we cannot overlook in the treatment of other 
differencing schemes. Specifically, the smoothness assumptions on f,Jx, E) and 
g,(x, E) and Eq. (4.30) imply that there must exist a smooth function p(x) such that 

h, = Ax,). (4.35) 
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(The choice of this function determines how the mesh is refined as E + 0. This is dis- 
cussed in Appendix A.) Therefore, in performing the intermediate diffusion analysis, 
we must assume that the width of the spatial cells is, itself, a smoothly varying 
function of position. We indicate in each of the following sections where this 
assumption becomes necessary, but we state here that we cannot derive any inter- 
mediate diffusion results without this assumption; thus, one should regard this 
assumption as an inherent part of the intermediate diffusion analysis. 

The results of this section are summarized in Table I. 

V. THE STEP METHOD 

Although the diamond-difference method is very popular, it has the drawback of 
not always producing positive solutions, particularly in problems that are not dif- 
fusive. As an alternative, we now consider the “step” differencing scheme [ 10, 111, 
which has the virtues of being extremely simple and of always producing positive 
solutions. 

A. Thick Regime 

The step equations in the thick diffusion regime are 

where here and elsewhere in this article, we take “ f ” to mean “ + ” if pL, > 0, and 
“ - ” if pL, < 0. Introducing the ansatz for the cell-edge and cell-average fluxes 

and equating the coefficients of different 
equations that can be solved recursively. 

The 0( l/c) equation is 

and hence 

$(O) = @W 
mJ J ' 

where c$;“) remains to be determined. 

powers of E, we obtain a sequence of 

(5.4) 

(5.5) 
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The 0( 1) equations are 

Combining the above three equations, we get 

and applying the solvability condition, we obtain 

This is a legitimate discretization of the standard diffusion equation only if 
Q = (T, = 0, and (c-rT h),, 1,2 = constant. Under these very restrictive conditions, the 
step cell-average fluxes have the thick diffusion limit; otherwise, they do not. Also, 
since manipulating Eqs. (5.5) and (5.7) yields 

e?Yj+ l/2 = 4;“: 112 f I/2 9 (5.10) 

the cell-edge fluxes also have the thick diffusion limit under the same restrictive 
conditions. 

B. Intermediate Regime 

The step equations in the intermediate diffusion regime are 

Z(li, m., + 112 
, 

-,,.,~,,2)+~im’=(~-&~~,)~, tin,M't,+EQjT (5.11) 

$,,=*m,,+1:2~ (5.12) 

As in the previous section, we hypothesize the existence of smooth functionsfJX, E) 
and g,,(X,-s) such that Eqs. (4.27) and (4.28) hold. Equations (5.11) and (5.12) then 
become 

,,;, fn(x,, ~1 w, + EQ, + O(E~), (5.13) 

gm(xj, &I + O(&*). (5.14) 
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For these equations to be consistent with the assumed smoothness off,(x, E) and 
g,(x, E), it is necessary that there exist a smooth function p(x) such that 

hj = P(X)). (5.15) 

(See Appendix A.) Equation (5.14) then implies 

gmtxj9 'I= 

L 

' Ti P(xj) g fm(xj, E) + O(E*), 1 (5.16) 

and using this result to eliminate g, from Eq. (5.13), we obtain 

Now we apply exactly the same asymptotic analysis to this equation as we 
previously applied to Eqs. (2.19) and (4.3 1). Omitting the straightforward details, 
we obtain 

where 

em, j+ l/2 = 4'O'tx, + I/*) + OtEh (5.18a) 

$mj = 4'"'(xj) + OCE), (5.18b) 

(5.19) 

and 

Hx)=P(x) c PL,Wm. (5.20) 
Pm>0 

These equations imply that the step cell-average and cell-edge fluxes do not possess 
the intermediate diffusion limit unless Q, = craj = 0, aTi = constant, and hi = constant. 

The results of this section are summarized in Table I. 

VI. THE LUND-WILSON AND CASTOR METHODS 

The Lund-Wilson [12, 133 and Castor [14] methods are modifications of the 
step method, and are designed to give better cell-average fluxes than the step 
method for spatial meshes that are not optically thin. In dimensional quantities, 
these methods are defined by the balance equation 

2, @m,i+ I,2 - 5m,j-1/2)+dTjGmj=ds i $~J~II+QJ~ (6.1) 
J n=l 
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and the auxiliarry equations 

5m,=~~m,,+li2~m,,+l/2~ 

(LunddWilson), 

’ (Castor), 

(6.2) 

(6.3) 

(6.4) 

Here, (c:T dz)j+ 112 can be any reasonable definition denoting an optical distance 
between the “centers” of the jth and (j+ 1)st cells. For example, Lund recommends 
for his method the harmonic mean 

1 1 1 

[ 

1 

CaT dz)j+ 112 =2 (CT AZ),+ (5T AZ),, ] I ’ 
(6.5) 

but for our diffusion limit analysis, one could equally well choose the arithmetic 
mean 

(&4,+,,2=t CtaT AZ), + taT dz)j+ 11. (6.6) 

The Lund-Wilson and Castor methods have the following general properties: 
they are positive (i.e., they cannot produce a negative angular flux), the cell-average 
and cell-edge fluxes cannot simultaneously equal the infinite-medium solution 
3 = cm, and the truncation error is first order in gr dz as this quantity tends to 
zero. 

A. Thick Regime 

In the thick regime, the Lund-Wilson and Castor methods are described by 

(6.9) 

with 

(Lund-Wilson) 
(Castor). 

(6.10) 
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We introduce the ansatz 

305 

(6.11) 

for both the cell-edge and cell-average fluxes into Eqs. (6.7) and (6.8) equate the 
coefficients of different powers of E, and obtain a sequence of equations that can be 
solved recursively. 

The O( l/e) equations are 

OTJ (*p f iywn) =o, (6.12) 
n=l 

o=T m,J+ I/2*!t’jk 1127 (6.13) 

which yield 

#J/(O) = @“’ 
ml I ’ 

(6.14) 

$(O) 
- 0% t&/+1/2- (6.15) 

where @“) is undetermined. Since the leading-order components of the cell-edge 
fluxes ari zero, we see immediately that these fluxes cannot have the thick diffusion 
limit. 

The O( 1) equations are, using the above results, 

which yield 

* 
(1) 
m,J+ 112 = --l +?I,2 l/29 

f m, j+ l/2 

(6.16) 

(6.17) 

(6.18) 

(6.19) 

where c$!‘) is undetermined. 
The &E) equation arising from Eq. (6.7) is 

Applying the solvability condition to this equation and using Eq. (6.19), we obtain 

3(aThJi+ 1,2 3(0,h)~- 1,2 
(6.21) 
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This result, together with Eq. (6.14), shows that the Lund-Wilson and Castor cell- 
average fluxes have the thick diffusion limit. 

B. Intermediate Regime 

The Lund-Wilson and Castor equations in the intermediate diffusion regime can 
be written 

~~tj=Ym.,+1/2*m.~fI/Z~ (6.23) 

l +zrn,j+l/2 (Lund-Wilson), 
(6.24a) 

Ym. i+ l/2 = 
ttt, , + 112 7 + /w (Castor), 

(6.24b) 

with r m, j+ 1,2 defined by Eq. (6.9). 
As before, we hypothesize the existence of smooth functionsf,(x, E) and g,(x, E) 

such’that Eqs. (4.27) and (4.28) hold. Equation (6.23) then gives 

fm(X,, E) = Y W/f &t7dXj+ 1123 E), (6.25) 

and the smoothness assumptions on f, and g, are consistent with this equation 
only if [by Eqs. (6.9) and (6.24)] (eTh)j+1,2 varies smoothly from cell to cell. To 
meet this condition, we assume that there exists a smooth function p(x) such that 

h, = p(xj). (6.26) 

(See Appendix A) Also, we have assumed that rrT(x) is a smooth function of x; and, 
thus, we may write 

OTj = S(Xj, E). (6.27) 

[For example, if cTi is the average value of o T(x) in a cell, then 

1 
s(x, E) =- s 

x+t/2p(x) 

-V(X) -x ~ QPCX) 
a,(~‘) dx’. 

1 
(6.28) 

Using Eqs. (6.26) and (6.27) in the definition of (crTh),+ ,,* being used [see, for 
example, Eqs. (6.5) and (6.6)], we get 

(a,h)j+ 112 = r(xj+ 112, EL (6.29) 

where r(x, E) is a smooth function of x and E, and the dependence on E occurs 
because of the (possible) dependence of s on E. 

Now, by Eqs. (6.24), we may write 

Y m,~+1/2=r(Ztn,j+1/2)~ (6.30) 
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where T(z) is a smooth function of T, defined differently for the two methods, If we 
define 

then [, is a smooth function of x and E, and 

Ym,i+ l/2 = 5&j+ 112, 4 

Hence, 

Ym,jt1/2= 
v(xj) dtm 

MXj, 6) + - - 2 dx (x,2 4+ m21. 

Introducing these results into Eqs. (6.22) and (6.23), we obtain 

The second of these equations gives 

(6.31) 

(6.32) 

(6.33) 

(6.34) 

(6.35) 

(6.36) 

and introducing this result into the first equation, we obtain 

(6.37) 

where all quantities are evaluated at xj. 
Now we apply exactly the same asymptotic analysis to this equation as we 

previously applied to Eqs. (2.19), (4.31), and (5.16). Omitting the straightforward, 
but somewhat lengthy details, we obtain 

m,Jt1/2 = 
4’“‘(xj+ *,2) + 

7 
Y m,j+ I/2 

(6.38a) 

+tTlj = 9'"'(x,j) + o(E), (6.38b) 
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where 4’“‘(x) satisfies 

-g; u-g+v f$‘“‘+cJ, qvO’=Q, 
T ( ) 

and 

(6.39) 

(6.40) 

(6.41 

44 0) 5,(x, 0) = - 
w77 . 

(6.42 

Equation (6.39) is the correct diffusion equation only if u = 1 and u = 0. However, 
by Eqs, (6.41), (6.31) and (6.29), v = 0 only if (a,h), + ,,* is independent of j. For 
the Lund-Wilson method, Eqs. (6.24a) and (6.40) give 

u(x)=3 f pi 
1 + 5,(x, 0) + 25(x, 0) 

II=1 1 1 + 2r,(x, 0) + tf(x, 0) 1 wn7 

so for finite, nonzero o,h, u < 1. For Castor’s method, however, [, satisfies 

(6.43) 

and, thus, by Eq. (6.40), u = 1. 
On the basis of these results and Eqs. (6.38) we can assert the following. Castor’s 

cell-average fluxes have the intermediate diffusion limit only if (a,/~),+ ,,* is 
independent ofj, and under no circumstances do Castor’s cell-edge fluxes have this 
limit. The Lund-Wilson cell-average fluxes have the intermediate diffusion limit 
only if oaj = Q, = 0 and (cT~~)~+ ijZ is independent ofj, and under no circumstances 
do the Lund-Wilson cell edge fluxes have this limit. These results are summarized 
in Table I. 

VII. NEW METHOD 

The following new method possesses all four diffusion limits. In dimensional 
quantities, it is defined by the balance equation 
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and the auxiliary equations 
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fj&+i5$!+, 

m 

(7.21 

(7.3) 

rj+ I/2 = 
CcT dz),+l C,“=l $njWn+ C6 dz),C,N_l $n,j+lWx 

(CT AZ),, 1 + (5, AZ), 
(7.4) 

This method can easily be shown to have a truncation error that is 0(5,4~)~ as 
i5T AZ tends to zero, and its cell-edge and cell-average fluxes both possess the 
infinite-medium solution $ = e/co. [The Lund-Wilson and Castor methods have 
first-order truncation errors in d, AZ, and their cell-edge fluxes do not possess the 
infinite medium solution.] On the other hand, the new method is not strictly 
positive, whereas the Lund-Wilson and Castor methods are positive. 

A. Thick Regime 

In the thick diffusion regime, the dimensionless, scaled equations become 

7 
_ (‘Th)J 

m’ 2lP,,l ’ 

i;+ l/2 = 
(aTh)J+ 1 c,“= 1 ‘J’nJWn + (aTh!, c,“= 1 $n,j+ 1 wn 

(cTh)j+ I+ (cTh)j 
(7.8) 

Introducing the usual power-series-in-s ansatz for the cell-edge and cell-average 
fluxes, and also for [, + ,,2, and equating the coefficients of different powers of E, we 
obtain a sequence of equations that can be solved recursively. 

The 0(1/~) equations are 

Gn(@iP,I- 2 $;y)wn)=o, (7.9) 
n=l 

7m,(tiE.), + I’2 - i;“+‘,,21= 0, (7.10) 

and hence 
$CO) = ($0’ 

m/ J ’ 
(7.11) 

ip). 
m, J + 1/2 = cl”+’ 1/2 (7.12) 

where 4,‘“) and c,‘“,‘,,, are, at this point, undetermined. 
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- J+ 1/2 - 

where 

(7.16) 

(7.17) 

C"Th)i+ l/2 = t [((TTh)j+ 1 + (GTh)jl? 

and where #j’) and cj:)1,2 are undetermined. 
The O(E) part of Eq. (7.5) is 

(7.18) 

OTj 
[ 

*j+$- i l@Wn 
“=I 1 

= -~(~~,:+,,2-~jr:.)i~i,Z)-d~j~:o)+Qj. (7.19) 
I 

Applying the solvability condition and using Eq. (7.17), we get 

@+‘l-qy’ _ f$pq5;1(“‘, 
3(a,h)J+ ,,2 3(a,h)jp ,,2 + (aah)j @“‘= (hQ)j. I 

(7.20) 

Thus, from Eqs.(7.11), (7.12), (7.15), and (7.20), the cell-average and cell-edge 
fluxes have the thick diffusion limit. 

B. Intermediate Regime 

In the intermediate diffusion limit, the dimensionless equations become 

i J+ 112 = 
caTh)j+ 1 c,“= 1 $njwn + (aTh)j c,“= 1 $n,j+ 1 Wn 

t"Th)j+ I+ C"Th)j 
7 (7.23) 
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with z,,, defined by Eq. (7.7). As in the previous sections, we hypothesize the 
existence of smooth functions fm(x, E) and g,(x, E) such that Eqs. (4.27) and (4.28) 
hold. Then, as in the previous sections, we must also hypothesize the existence of 
smooth function p(x, E) and t(x, E) such that 

hj = P(xj), (7.24) 

(a,h), = t(xj, E). (7.25) 

Introducing all these expressions into Eq. (7.23) and expanding about the point x,, 
we obtain 

ij* l/2 = (7.26) 

Thus, Eqs. (7.21) and (7.22) become 

(7.27) 

(7.28) 

At this point, it is algebraically simplest to adopt a somewhat different procedure 
than in the previous sections. Namely, we expand both f, and g, in a power series 
in E, 

(7.29a) 

&Ax, E) = f &kg!?(X), (7.29b) 
k=O 

and we introduce these series into Eqs. (7.27) and (7.28), equate the coefficients of 
different powers of E, and obtain a sequence of equations that can be solved recur- 
sively. The details are straightforward, and we omit them. Using the fact that as 
E + 0, Eqs. (7.24) and (7.25) give 

we obtain 

dT(X) P(X) = t(x, 01, (7.30) 

+mJ = 4'"'txj) + O(&), (7.31) 

+m,j+1/2= i’“‘txj+ l/2) + OtE), (7.32) 
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(7.33) 

therefore, the cell-average and cell-edge fluxes have the intermediate diffusion limit. 
Thus, as shown in Table I, this new differencing scheme has all four diffusion 

limits. It is relatively straightforward to generalize this scheme to produce 
additional schemes that also have all four diffusion limits. One such differencing 
scheme, which is more complicated than the scheme presented here, but which is 
more positive, is described in [ 193. 

VIII. NUMERICAL RESULTS 

In this section, we describe numerical results for live problems chosen to test the 
theoretical predictions made in the previous sections. We describe each problem 
with its numerical results separately, and then we give a brief summary. All of the 
following problems used the standard S, GausssLegendre quadrature set, and all of 
the “exact” solutions were obtained using the diamond-difference method with lo4 
equal spatial cells. In addition, we refer to the various spatial meshes as either 
“intermediate” or “thick” to indicate the asymptotic regimes within which the dis- 
cretizations lie. 

Problem 1 

Pm%+ lOOti,= 100 f $,w,+O.Ol, o<z< 10, 
PI=1 

1.0 
AZ= 

(thick) 
0.01 (intermediate). 

In Figs. 3-6, we display the cell-average and edge scalar fluxes for the thick and 
intermediate spatial differencings. (In these and all subsequent figures, we use the 
abbreviations DD = diamond difference, SD = step difference, LW = Lund-Wilson, 
CD = Castor difference, and ND = new difference scheme.) The results shown in 
these figures agree with the theoretical predictions. In Fig. 3, the LW and CD 
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FIG. 3. Problem 1 cell average scalar fluxes: Thick differencing. 

solutions are parabolic in shape and, thus, represent a numerical solution of the 
correct diffusion equation-but with slightly incorrect boundary conditions. This 
occurs because, at a system boundary, the methods reduce to SD (which does not 
have the diffusion limit) for the outgoing directions. [In these and all other LW and 
CD calculations, we used the definition (6.5) for (~,h)~+ r,*, which, with or.= 0 
outside the system, yields gT, 1,2 = dT, /+ r,* = 0.1 If we had added two very thin 
cells, one at each edge of the system, the LW and CD solutions would have been 
much more accurate. 
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FIG. 4. Problem 1 cell edge scalar fluxes: Thick differencing. (The DD and exact curves are coin- 
cident, and the SD, LW, and CD curves are essentially zero.) 
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FIG. 5. Problem 1 cell average scalar fluxes: Intermediate differencing. (The exact, DD, CD, and ND 
curves are coincident.) 

Problem 2 

Pm%+ loo(c/m= 100 f l+bnw,, o<z< 10, 
n=, 

*In(o) = 0, Pln>O~ 
$,( 10) = 1.0, P,<O> 

(thick) 
(intermediate). 
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FIG. 6. Problem I cell edge scalar fluxes: Intermediate differencing. (The exact, DD, and ND curves 
are coincident.) 
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FIG. 7. Problem 2 cell average scalar fluxes: Thick differencing. (The exact, DD, SD, and ND curves 
are coincident.) 

Here we give two Figs., 7 and 8, displaying the cell-average fluxes for the thick 
and intermediate spatial differencings. Now, all of the methods have both diffusion 
limits ‘(i.e., all of’the solutions have the correct linear shape, which agrees with our 
theory). However, as with the previous problem, the LW and CD solutions have 
somewhat incorrect boundary values, which lead to inaccuracies within the system, 
and these inaccuracies are greater with the intermediate spatial differencing. 
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FIG. 8. Problem 2 cell average scalar fluxes: Intermediate differencing. (The exact and DD curves are 
coincident; the LW and CD curves are coincident.) 
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FIG. 9. Problem 3 cell average scalar fluxes: Thick differencing. 

Problem 3 

r,~+100(1+2)~,,=100(1+2) f $,w,+O.Ol, o<z< 10, 
n=l 

tim(O) = 09 P,>O> 

II/,( 10) = 0, I*rn<O~ 

AZ= 
{ 

0.5 (thick) 
0.005 (intermediate). 

This problem was chosen to test the theoretical predictions for non-constant 
d, AZ; in the thick differencing GT AZ monotonically varies from 62.5 to 537.5, 
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FIG. 10. Problem 3 cell average scalar fluxes: Intermediate differencing. (The exact, DD, and ND 

curves are coincident.) 
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while in the intermediate differencing, the variation is from 0.625 to 5.375. In Figs. 9 
and 10, the cell-average fluxes are plotted for the thick and intermediate spatial 
meshes, and as with the previous problems, these results agree with our theory. The 
LW and CD thick fluxes are somewhat inaccurate, again due to the relative coar- 
seness of the cells at the system boundaries. Also, the intermediate CD fluxes are, as 
predicted, not in agreement with the exact solution, although for this problem, the 
deviation is not large. 

Problem 4 

p,~+loo~,=loo $ $,,w,, o<z< 10, 
n=l 

*n%(o) = 05 CLrn>O> 

AZ = 1.0 (thick). 

Here, we order the quadrature set in increasing values of p, so that p, is the 
element closest to -1.0. Therefore, this problem is driven by a “pencil” beam 
incident on the right edge of the system in a nearly normal direction. The structure 
of the exact angular flux is as follows: a transport region or boundary layer, a few 
mean free paths thick, exists at the right edge of the system, within which the 
angular flux transitions from a highly anisotropic distribution (at z = 10) to a 
nearly isotropic distribution (a few mean free paths to the left of z = 10); in the 
remainder of the system, the angular flux is nearly isotropic and is well- 
approximated by diffusion theory. 

We include this problem for two reasons. First, the previous problems we have 
considered involve isotropic boundary conditions; since the leading order term in 
the asymptotic expansion of the analytic transport equation is itself isotropic, this 
term in these problems does not contain a boundary layer. However, in this 
problem, this term does contain a boundary layer, a few (say, five) mean free paths 
thick. Then, the diffusive region for this problem is (approximately) 0 <z < 9.95, 
while the boundary layer is (approximately) 9.95 6 z < 10.0. Since each spatial cell 
has width AZ = 1.0 ( = 100 mean free paths), it is clear that this mesh cannot resolve 
the rapid variation in $, within the boundary layer. Thus, even though the 
problem is physically dominated by the diffusive region, the O(1) variations of I,$,,, 
in the boundary layer and the absence of resolution of these variations by the 
spatial mesh imply that any numerical scheme, even one with all the correct dif- 
fusion limits, can give very poor results. We include this problem partly to 
emphasize this crucial point. 

The second reason for including this problem is to demonstrate that the DD 
scheme does exhibit oscillatory behaviour in the cell-edge fluxes when the boundary 
source for an optically thick cell is not isotropic. (This oscillatory behaviour has 
been observed elsewhere for nondiffusive problems [21].) 
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FIG. 11. Problem 4 cell edge scalar fluxes: Thick differencing. (The LW and 
coincident.) 

CD curves are 

Figure 11 illustrates both these points.’ Here, the LW and CD edge fluxes are 
nearly zero, the DD edge fluxes oscillate, and the SD and ND edge fluxes are 
linear; all this is predicted by theory. [The ND curve rises linearly off the figure 
from 4 = 0 at z = 0 to 4 = 83 at z = 9.1 In particular, although the ND cell edge 
fluxes have the thick diffusion limit and the DD cell-edge fluxes do not, the DD 
fluxes, even though they exhibit the unphysical oscillation, are more accurate. This 
is because, for this problem, the lack of resolution of the boundary layer leads to a 
disastrous value of the ND flux at z = 9, and since the ND flux varies linearly (as it 
should) between z = 0 and z = 9, the large inaccuracy at z = 9 leads to large 
inaccuracies throughout the system. 

Since the DD cell edge fluxes oscillate when the boundary flux for an optically 
thick cell is not isotropic, and since the presence of such a nonisotropic flux 
indicates the existence of a boundary layer, one can interpret the presence of 
oscillating DD cell edge fluxes in a numerical solution as an indication that a boun- 
dary layer exists that has not been adequately resolved. 

In the next problem, we resolve the above boundary layer and show, among 
other things, that the oscillations in the DD cell edge fluxes disappear. 

Problem 5 

pm%+ 100 lClrn = 100 f $nw,, o<z< 10, 
n=l 

*m(o) = 0, &?7>0~ 

l/+,(10) =>, Pm<O, 

AZ= 
i995 (first 10 cells; thick) 
0.001 (last 50 cells; thin) ’ 
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FIG. 12. Problem 5 cell edge scalar fluxes: Thick differencing in diffusive region, thin differencing in 
boundary layer. (The exact and DD curves are coincident; the LW and CD curves are coincident.) 

This is the same physical problem as Problem 4, but now the boundary layer is 
thoroughly resolved by 50 spatial cells, each 0.1 mean free paths thick, and the dif- 
fusive region is differenced with 10 cells, each 99.5 mean free paths thick. 

In Fig. 12, we plot the thick cell edge fluxes for this problem. The improvement in 
the DD and ND results over those in Problem 4 is striking, and is due entirely to 
the adequate numerical treatment in the boundary layer. The LW and CD fluxes 
again are nearly zero, as they should be, and the SD solution is linear in the dif- 
fusive region, as it should be. The reason why the SD solution is inaccurate is 
because the mesh is not uniform. In particular, we have h, = hlo = 0.995 and 
h,, = 0.001, and so Eq. (5.9) for the j = 10 cell does not correspond to a differencing 
of the correct diffusion equation (in that cell). This shows that even though the SD 
scheme does give the correct diffusion solution under very special conditions, one 
cannot violate these conditions and expect to obtain accurate results. 

To summarize the numerical results presented above, along with others that we 
have not included in this article, we can simply state that these results agree with 
the asymptotic theory. This theory not only predicts when a given differencing 
scheme does or does not have a given diffusion limit, but it also accurately predicts 
the manner in which a differencing scheme fails when it does not have a given limit. 
For example, the LW and CD thick edge fluxes are predicted to vanish, and we 
observe this in calculations. For another example, in calculations not included in 
this article, we have numerically solved Eq. (5.19) to verify that the step cell-edge 
and cell-average intermediate fluxes do satisfy this equation rather than the correct 
one (with CI =O). However, our calculations do emphatically show that the 
asymptotic theory is valid only for diffusive regions, and that if a differencing 
scheme has a certain diffusion limit, one can be assured of obtaining good 
numerical results for the appropriate (edge or average) flux with the appropriate 
(thick or intermediate) mesh onZy if the nondiffusive regions in the problem are ade- 
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quately resolved by the spatial mesh. In particular, it is possible for a scheme that 
does not have a diffusion limit to produce a better result than one that does, if (for 
the first scheme) the boundary conditions for the diffusive region are sufficiently 
poor due to an inadequate meshing at a boundary. 

IX. DISCUSSION 

In this article, we have considered several spatial differencing schemes for the 
transport equation and have shown how, in diffusive regions with spatial cells that 
are not optically thin, one can predict the accuracy of the resulting numerical 
solutions. Our theoretical tool is an asymptotic expansion that has previously been 
used to describe the transition from the analytic transport equation to the analytic 
diffusion equation in “diffusive” problems. We have tested our results numerically 
and have obtained excellent agreement between theory and experiment. To con- 
clude this article, we briefly consider some additional aspects of our analysis. 

First, we discussed in Section III several possible scalings of the dimensionless 
spatial mesh. The resulting choices, 

Axj = dh,, 

with h, = O(l), I = 0 (thick), and I = 1 (intermediate), determined the course of the 
analysis in Sections IV-VII. However, other choices of I are possible and may be of 
interest. In particular, if 1 is chosen between 0 and 1, then one has an asymptotic 
limit “between” the thick and intermediate limits considered above. Since 6’ appears 
in Eq. (3.1), the only mathematically workable choices of I are rational, say 

l=k, 
J 

with i, j positive integers and i<j, and then the ansatz that one would choose for 
II/,,, would be 

aa 
lClrn E 1 Ek4jPj. 

k=O 

(Clearly, one would not want to consider values of j that are very large.) Such 
choices of 1 lead to curves in Fig. 1 that lie between the intermediate and thick 
(dashed) lines, and that approach the origin (Ax, E) = (0,O) tangent to the vertical 
axis. 

Next, we discuss the concept of “resolving” a solution with a spatial mesh. 
Roughly, this means that if one knows something about the solution of a given 
problem and selects a spatial mesh so that the change in the exact solution from 
one cell to the next is not large, say less than lo%, then the numerical solution 
ought to be reasonably accurate. (Thus, for example, if a solution has steep 
gradients, then many cells are required at the location of these gradients, and in 
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regions where the solution slowly varies, relatively few cells are required.) 
Moreover, if one has such a mesh and then relines it, the numerical solution should 
improve. In brief, the familiar concept is that to obtain an accurate numerical 
solution, it is sufficient to choose a mesh that, in the above sense, “resolves” the 
exact solution. 

The point we wish to make here is that, for transport differencing schemes in dif- 
fusive regions, this concept is not always true. One can easily argue that if a scheme 
has the thick and intermediate limits for the cell-edge and cell-average fluxes, then 
the concept is valid. However, if this is not the case, then the concept is generally 
not valid. For example, the step scheme yields an inaccurate solution in Problem 1, 
even for the intermediate spatial differencing with lo3 cells and a very small change 
in the solution occurring from one cell to the next. Also, the Lund-Wilson cell- 
average fluxes are reasonably accurate for the thick differencing (10 cells) in 
Problem 3, but are less accurate for the intermediate differencing ( lo3 cells). The 
reason for all this, which is not commonly understood, but which we hope is made 
clear in this article, is that even though the solutions of these problems are 0( 1) 
and smooth, the equation that determines the solutions has a small parameter that 
indicates an underlying singular perturbation problem. Nevertheless, our point 
remains valid and we repeat: a mesh which “resolves” the diffusion and transport 
solutions in a diffusive transport problem does not always guarantee an accurate 
transport approximation. (However, if the mesh is sufficiently resolved so as to be 
in the thin regime, then the solution will be accurate.) 

Also, some of the results in this article could have been obtained by constructing 
a dispersion law for each transport differencing scheme and then performing the 
asymptotic expansion on the dispersion law to determine whether a dispersion law 
for the correct diffusion equation results. Such dispersion laws have found wide use 
in analyzing the behaviour of very general partial differential equations [22, 231. 
However, to construct a dispersion law, one must have an infinite medium with 
constant cross sections and a uniform mesh, so that the separation of variables 
technique is workable. Thus, one cannot obtain information regarding the 
numerical scheme from the dispersion law when the cross sections or the mesh vary. 
This limitation is not shared by the asymptotic analysis in this article. In particular, 
our analysis shows that (a) certain differencing schemes have a diffusion limit when 
CT, C,,, and dz vary, and (b) certain schemes have a diffusion limit if c?~, 5,, and dz 
are constant, but do not if these quantities vary in a general way. We emphasize 
that these results could not have been obtained from the analysis of a dispersion 
law. 

In this article we have analyzed spatial differencing schemes that employ two 
unknowns per cell: the cell-average flux, and the flux on the exiting boundary. 
There are, however, other schemes that employ three unknowns per cell; such 
schemes are the linear discontinuous,24 linear moments,25 and linear characteristic 
methods.24 We have asymptotically analyzed these three schemes in diffusive media, 
and have found that they possess all four diffusion limits. Details of these results 
will be presented in a future article. 
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In addition, in future work we plan to extend the above analysis to curvilinear 
and multidimensional geometries, and to time- and energy- (or frequency-) depen- 
dent problems. We believe that such analyses will successfully predict the accuracy 
of the corresponding numerical schemes in optically thick, diffusive media. 

APPENDIX A 

In this article, we have assumed, for all the intermediate diffusion limit analyses, 
that we have a spatial mesh with cell edges x,~ ,,2 <xi+ 1,2, with cell centers 

x~ = tCxj l/2 + xj+ l/2), ((A.1 

and cell widths 

Axj=xj+ 112 -x,- l,12=EP(Xj)3 (A.2 

where p(x) is a smooth function of x, independent of E. In principle, p(x) is selected 
on the basis of a particular mesh and value of E, and we wish to use Eqs. (A. 1) and 
(A.2) to define “finer” meshes for smaller values of F. In this appendix, we prove 
that, for p(x) sufficiently smooth and E sufficiently small, Eqs. (A.l) and (A.2) do, in 
fact, define a unique set of mesh points xj, x,+ ,,2. 

To do this, we note from Eqs. (A.l) and (A.2) that 

1 

x, + I - x,=-(xj+1:2-x,+1,2)=c CP(X,+,)+p(X,)], 2 2 (A.3) 

and, thus 

X I+ 1 -;p(x,+I)=xj+;p(xj). (A.4) 

This equation determines the points xj recursively, with the starting point x, deter- 
mined by 

(A.51 

[Here, we have assumed x,,~ = 0, and we wish to proceed from left to right across 
the system.] 

We assume that p(x) is continuous, p’(x) is bounded: 

I~‘(x)l < H, (‘4.6) 

and we require E to be fixed and to satisfy 

O<B<$ (A.7) 
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Then the function 

F(x)=x-$(x), t-4.8) 

satisfies F(x) > 0, and hence is continuous and monotone increasing. Thus, since 
F(0) < 0, exactly one value of x (denoted as x,) exists such that F(x,) = 0. Clearly, 
x1 satisfies Eq. (AS). 

Next, since x, + (s/2) p(xl) is positive, exactly one value of x (denoted as x2) 
exists such that F(xz) =x, + (s/2) p(xl). Clearly, x2 satisfies Eq. (A.4) for j= 1. In 
this manner, we recursively determine x3, x4, etc. 

Now, having the cell center points x,, we determine the cell edge points recur- 
sively by 

X -0 1/z- > (A.9a) 

X,+ l/2 = xj- l/2 + &PtXj). (A.9b) 

An easy induction proof shows that the points xi and xi+ 1,2 determined by this 
process satisfy Eq. (A.l). [They satisfy Eq. (A.2) by virtue of Eq. (A.9).] 

Therefore, for p(x) satisfying Eq. (A.6) and all E satisfying Eq. (A.7) Eqs. (A.l) 
and (A.2) define a unique spatial mesh. Moreover, the mesh determined in this way 
(with a fixed left boundary, x,,, = 0) has the property that the cell centers and cell 
edges depend continuously and monotonically on E. Therefore, in a finite region 
[say, 0 < x < X], there are, at most, a countable number of values of E, descending 
to zero, 

o< ... < E3 < E2 <El, 

such that cell edges will coincide with x = X as well as x = 0. In such a case, one 
cannot regard the results in this article as holding for “all” E sufficiently small, but 
rather, for all E sufftciently small and in this special set. 
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